Object Detection Using Probabilistic Graph Model
نویسندگان
چکیده
We propose a Probabilistic Graph based Model for interactive image segmentation. A multilayer probabilistic Graph is constructed from an oversegmentation of the image to model the relationships among super pixel regions, edge segments and vertices. We used an iterative procedure to merge several regions based on the probability of the regions. Regions are merged until the user is satisfied with the segmentation. Each node’s probability is updated after each iteration. With the help of proper user intervention the input image is segmented in short time period. We evaluate the proposed model on many images in the database. The results demonstrate that the Graphical model can be used for interactive image segmentation (IS). The results also shows that the proposed method has good accuracy and efficiency for both segmenting the image and extraction of the object from the segmented image.
منابع مشابه
Graph-based Visual Saliency Model using Background Color
Visual saliency is a cognitive psychology concept that makes some stimuli of a scene stand out relative to their neighbors and attract our attention. Computing visual saliency is a topic of recent interest. Here, we propose a graph-based method for saliency detection, which contains three stages: pre-processing, initial saliency detection and final saliency detection. The initial saliency map i...
متن کاملLPKP: location-based probabilistic key pre-distribution scheme for large-scale wireless sensor networks using graph coloring
Communication security of wireless sensor networks is achieved using cryptographic keys assigned to the nodes. Due to resource constraints in such networks, random key pre-distribution schemes are of high interest. Although in most of these schemes no location information is considered, there are scenarios that location information can be obtained by nodes after their deployment. In this paper,...
متن کاملProbabilistic saliency estimation
In this paper, we model the salient object detection problem under a probabilistic framework encoding the boundary connectivity saliency cue and smoothness constraints in an optimization problem. We show that this problem has a closed form global optimum which estimates the salient object. We further show that along with the probabilistic framework, the proposed method also enjoys a wide range ...
متن کاملApplication of Combined Local Object Based Features and Cluster Fusion for the Behaviors Recognition and Detection of Abnormal Behaviors
In this paper, we propose a novel framework for behaviors recognition and detection of certain types of abnormal behaviors, capable of achieving high detection rates on a variety of real-life scenes. The new proposed approach here is a combination of the location based methods and the object based ones. First, a novel approach is formulated to use optical flow and binary motion video as the loc...
متن کاملA Novel Probabilistic Based Image Segmentation Model for Realtime Human Activity Detection
Automatic human activity detection is one of the difficult tasks in image segmentation application due to variations in size, type, shape and location of objects. In the traditional probabilistic graphical segmentation models, intra and inter region segments may affect the overall segmentation accuracy. Also, both directed and undirected graphical models such as Markov model, conditional random...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014